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Abstract. We present a continuum model for diffusion-limited non-dense growth. Our approach
leads to a set of two coupled partial differential equations which describe the time evolution of the
(spherically) averaged aggregation density and concentration of growth units in the liquid phase.
For time-independent parameters the solution of the equations yields a constant (non-fractal)
aggregation density. The model gives a phenomenological description of non-fractal unstable
growth, e.g. non-fractal spherulitic growth, on a macroscopic scale in terms of a minimal number
of parameters and can be used in combination with experimental data, such as the front velocity
and the width of the growth front, for both a qualitative and quantitative interpretation of the growth
process. The analytical solution of the equations in the diffusion-limited regime leads to simple
relations involving the aggregation density and the velocity and width of the growth front. This
allows for an easy quantitative analysis of experimental data.

1. Introduction

The growth of branched, non-dense structures has been studied for several decades with the
aim of achieving an understanding of unstable crystal growth [1, 2], e.g. dendritic [3–6] and
spherulitic growth [7–10], and aggregation processes, such as those of dust and soot [11, 12]
and even bacterial colonies [13]. A possible way to model such growth is diffusion-limited
aggregation (DLA) [14], a simulation process where growth units are released, one by one, at a
point far from the aggregate, make a random walk until they reach the surface of the aggregate
and then become part of the aggregate. The structures grown by DLA are non-dense and have
a fractal scaling behaviour in the sense that the number of growth units that aggregate within a
radius r (for spherical geometry) scales as a non-integer power of r , i.e.N(r) ∝ rDH whereDH

is the so-called Hausdorff dimension. The corresponding aggregation density scales then as
rDH−d where d is the ‘normal’ dimension of the space. For the DLA model in two dimensions
starting from a central nucleus, DH � 1.7, independently of the short-range details, such as
the symmetry of the underlying lattice and the attachment probability. Since the introduction
of the original DLA model, various modifications have been proposed, including incorporation
of noise reduction [16, 17], surface kinetics [18], surface diffusion [19] and combinations of
these [20, 21], in order to make it more realistic with respect to experimental situations.

Qualitatively the various DLA simulation models are perfect tools for studying unstable
growth, but in many cases they are less suitable for a quantitative approach to experimentally
observed structures on a macroscopic scale. First, this is due to the fact that the simulation
of a real system by means of DLA in a three-dimensional geometry, where a huge number
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of aggregated units are involved, would require too much computer effort. This is not a
simple scaling problem, since the size of the growth units plays an important role as regards
characteristics of the aggregate on a macroscopic scale. For instance, the width of the growth
front can be as small as the size of one growth unit in the limit of stable growth, and therefore
the scaling problem cannot simply be solved by performing, for example, DLA simulations
with bigger (pseudo-) growth units and a corresponding scaling of the kinetic and diffusion
constants. Secondly, from the DLA simulations, the steady-state limit is often not evident,
either because the limit regime has not yet been reached or because there is no steady state.
Finally, in many cases there is a strong anisotropy in the adsorption rate as a function of
the orientation in which a growth unit is attached. This is often related to the shape of the
growth unit, which is far from cubic or spherical in many cases. In particular this holds for
the growth of spherulites from chain-like molecules, where a growth unit should be modelled
by an elongated rectangular box rather than by the cube which is commonly used in DLA
studies. We consider spherulitic growth as a form of unstable growth, although in this case
the instability is not primarily associated with a lack of surface free energy, but rather due
to a strongly anisotropic growth rate and the occurrence of misoriented branching where the
crystallographic orientation of the side branch is different from that of the stem. To model such
kinds of growth by means of DLA is far from easy—also because (too) many, often unknown,
input parameters are needed for a realistic simulation of the kinetics at the surface and the
formation of side branches.

The interest of our model, presented in this paper, is that it provides a tool for making a
simple quantitative evaluation of an unstable growth process on the basis of experimentally
accessible data, such as the position of the growth front as a function of time, the width of
the growth front and the averaged aggregation density. We will not be concerned with the
details of the surface kinetics on a microscopic scale, but formulate the problem of diffusion-
limited growth with a minimal number of parameters which have a clear relationship with the
available experimental data. Therefore our description is phenomenological at the outset and
should not be considered as a continuum approach to the DLA model. It cannot predict a
fractal dimension. Actually for non-time-dependent parameters the solution of our equations
yields a non-fractal dimension, i.e. the aggregation density scales as a constant, implying
DH = d. Therefore our model particularly applies to non-fractal diffusion-limited unstable
growth. Such growth can occur in a wide variety of molecular systems. An example is given in
figure 1, which shows a typical di-sodium oxalate spherulite grown from an aqueous solution.
Similar structures can be grown from other simple molecular systems, and also from more
complex systems such as proteins. Spherulitic growth also occurs in polymer systems, but in
this case it is commonly believed that the growth is largely dominated by the surface kinetics
and not by diffusion [22, 23].

The present paper is purely theoretical in the sense that we do not apply our model to
any particular experimental system. It presents the theoretical framework of a pragmatic
approach to non-dense growth together with indications for how to use it for the interpretation
of experiments. Experimental work on non-dense growth which is well described by our model
will be reported in a separate paper [24].

Our model, which is derived in section 2, amounts to a coupled set of non-linear partial
differential equations, which describe the time evolution of the spherically averaged (or slice
averaged in the case of planar geometry) aggregation density as well as the spherically averaged
concentration of growth units in the surrounding liquid phase. In section 3 we first present
numerical solutions of the equations and then the analytical steady-state solution for different
kinds of boundary conditions. In section 4, we show how the model can be applied for the
interpretation of experiments. In particular, it leads to a simple test which can be carried out on
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Figure 1. A typical di-sodium oxalate spherulite grown from an aqueous solution.

the basis of front velocity data to find out whether the observed instability is due to diffusion
limitation, or to the surface kinetics. To be specific, if it is due to diffusion limitation this means
that during the growth the growth units are adsorbed within a relatively small region at the
border of the aggregate, the growth front, so they do not reach the inner part of the aggregate
which as a consequence remains non-dense. By surface kinetics we mean all mechanisms
other than the diffusion in the mother phase, such as the adsorption and desorption of growth
units, surface diffusion, growth anisotropy, formation of side branches. Finally, we conclude
with a summary and discussion in section 5.

2. Description of the model

For the description of our model, we think of an aggregation process in a bath of diffusing
growth units, where the growth of the aggregate takes place by the sticking of these units at
the perimeter sites (sites in the liquid adjacent to aggregated growth units) just as in the DLA
process. For convenience, in the text we will refer to a spherical geometry (d = 3), instead of
mentioning each time other possible geometries, such as circular (d = 2) and planar (d = 1)
geometry. The growing aggregate will also be denoted as the solid phase, which is surrounded
by the liquid phase.

As a starting point for the derivation of the our equations, we take a generalization of the
equations as proposed in reference [14] for a continuum limit description of the DLA process:

∂ρ

∂t
= u

ρ0

∑
j

KjPj (1)
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∂

∂t

[
ρ +

(
1 − ρ

ρ0

)
u

]
= −�∇ · �J (2)

where ρ(�r, t) and u(�r, t) (both in m−3) are the position- and time-dependent concentrations
of growth units in the solid and liquid state of aggregation respectively, and �J (in m−2 s−1) is
the growth unit current density defined by

�J = −D

(
1 − ρ

ρ0

)
�∇u. (3)

Actually, since we are dealing with a continuum description, ρ(�r, t) represents the
concentration of growth units in the solid state of aggregation per unit of volume, averaged
over a small volume that is large compared to the size of one growth unit, so ρ(�r, t) is a
smoothed function and has a support between 0 and ρ0, where ρ0 (in m−3) is the density of
growth units in the completely dense solid phase. Then 1 − ρ(�r, t)/ρ0 represents the porosity
of the structure. Pj (�r, t) (in m−3) is the concentration of perimeter sites of type j , D is the
diffusion constant for the transport of growth units in the liquid phase and Kj (in s−1) is the
sticking probability per second for the sticking of a growth unit at a perimeter site of type j

at a concentration ρ0 of growth units in the liquid phase and a concentration ρ0 of perimeter
sites. The first expression, equation (1), describes the growth of the solid and the second,
equation (2), reflects the conservation of mass. Equation (1) is a generalization with respect to
the equation used in reference [14] in the sense that we distinguish between different types of
perimeter sites which may have different growth rate constants, whereas in reference [14] all
perimeter sites are assumed to be equal. This generalization makes it possible to bring in the
anisotropy for cases where the growth rate strongly depends on the orientation of the growth
plane. Equation (2) is somewhat different from the corresponding equation in reference [14],
due to the fact that it supposes a different definition of u and that it properly takes into account
the effect of the excluded volume occupied by the solid, where no diffusion can take place. In
our definition of u, the total density of growth units is given by ρ + (1 − ρ/ρ0)u, whereas in
reference [14] it is equal to ρ + u.

For crystal growth from a solution, the growth rate of a (kinetically) roughened surface is
proportional to the absolute supersaturation σ defined by

σ = u − ueq (4)

where ueq is the equilibrium concentration of growth units, which is a function of the
temperature. Therefore, for the application to crystal growth, u in equation (1) should be
replaced by u− ueq . In the derivation that follows we have not accounted for such a shift, for
convenience. This is a good approximation if ueq is small, but should be kept in mind for larger
ueq . The correction related to this shift can be taken into account without complications [24].
Furthermore, besides the mass diffusion one should also consider the heat transport. However,
normally the heat transport is much faster than the mass diffusion, so usually one may assume
a uniform and constant temperature.

In reference [14] an expansion of the perimeter density in terms of ρ is performed, which
leads to a coupled set of non-linear partial differential equations describing the evolution of
ρ and u. In principle these equations, with an additional stochastic term to simulate the
formation of side branches, could be solved numerically for a given set of suitable starting
functions ρ(�r, 0) and u(�r, 0). However, such a numerical calculation in three dimensions
with a highly exotic moving boundary is extremely complicated (if not impossible) and would
require considerable computational effort. Moreover, usually there is a lack of information on
the values of the various parameters describing the growth kinetics, such as the orientation-
dependent growth rate and the probability for non-crystallographic branching. Therefore, we
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propose to apply a spherical averaging which reduces the number of space coordinates to one.
The resulting set of partial differential equations describe the time evolution of functions that
represent quantities which are averaged with respect to the angular coordinates and thus depend
only on the radial coordinate r .

We define the averaged solid-phase density, ρ̃(r), by

ρ̃(r) = N ′
s(r) δr

�drd−1 δr
(5)

where �dr
d−1 δr (with �d = 4π for d = 3) is the volume of a spherical shell of radius r and

thickness δr and N ′
s(r) δr is the number of growth units in the solid aggregation state within

this shell. Here and in the following δr is a number which is very small on a macroscopic
scale but larger than the edge length of one growth unit. According to equation (5), ρ̃(r) has a
support between 0 and ρ0. Next, we define the averaged concentration of growth units in the
liquid phase, ũ(r), by

ũ(r) = N ′
l (r) δr

(1 − ρ̃(r)/ρ0)�drd−1 δr
(6)

where N ′
l (r) δr is the number of growth units in the liquid phase within the spherical shell

between r and r +δr . The extra factor (1− ρ̃(r)/ρ0) accounts for the excluded space occupied
by the solid. For ρ̃(r, t) = ρ0, ũ(r) is not well defined, but this is not a problem because there
is no liquid in a completely dense solid. We assume that the volume per growth unit in the
liquid state is equal to that in the solid state, so ũ(r) has a support between 0 and ρ0. In most
cases this assumption is a good approximation.

With these definitions the growth equation, expression (1), can be rewritten as

∂ρ̃(r)

∂t
= ũsurf (r)

ρ0

∑
j

Kj P̃j (r) = ũ(r)

ρ0

∑
j

K̃j P̃j (r) (7)

where ũsurf (r) is the averaged concentration of growth units at the solid–liquid surfaces at
radial position r and P̃j (r) is the spherically averaged concentration of perimeter sites of type
j defined by

P̃j (r) = N ′
pj (r) δr

�drd−1 δr
(8)

where N ′
pj (r) δr is the number of perimeter sites of type j in the liquid phase within the

spherical shell between r and r + δr . If we assume that the concentration of growth units in the
liquid is uniform in the lateral directions, i.e. the directions perpendicular to the radial direction,
so that ũsurf (r) = ũ(r), then the kinetic constants K̃j in equation (7) are equal to Kj , defined
earlier. This assumption will be a good assumption in many cases for the following reason.
Due to the diffusion limitation in the radial direction, the concentration within the growth
front will become small (see figure 2) and thus the growth velocity of the crystal faces will
also become (relatively) small in the (quasi-) stationary regime. Therefore no strong gradients
will be built up over the relatively small lateral distance between the branches. However, if
for certain cases the concentration is not uniform in the lateral directions, we may argue that
ũsurf (r) is some factor f smaller than ũ(r), i.e. ũsurf (r) = f ũ(r), where we assume that f
is approximately constant within the growth front in the stationary regime or represents an
appropriate averaged value. We have included this factor in the kinetic constant K̃j = fKj ,
which is defined as the probability per second of the sticking of a growth unit at a perimeter
site of type j at a spherically averaged concentration ρ0 of growth units in the liquid phase and
a spherically averaged concentration ρ0 of perimeter sites.
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The next step that we make is that we assume two kinds of perimeter sites: lateral and
parallel perimeter sites. The lateral (or perpendicular) perimeter sites occur at faces parallel
to the radial direction and cause the growth in the lateral direction(s), whereas the parallel
perimeter sites, occurring at faces perpendicular to the radial direction, cause the growth in the
radial direction. This assumption makes sense for unstable growth. A strong lateral growth
acts as a stabilizing influence and leads to denser structures. The lateral growth can consist in
the thickening of the branches and/or the formation of side branches causing an increase in the
number of branches. We note that in reality a perimeter site may be neither purely lateral nor
parallel. Such a site will contribute to the perimeter concentrations of both types.

In the limit of small solid-phase density, the lateral perimeter density, P⊥(r), should be
proportional to ρ̃(r) and is also related to the thickness of the branches. For example, if the
number of branches that crosses the sphere of radius r is doubled at equal averaged thickness
of the branches, then P⊥(r) will be twice as large. On the other hand, in the limit of ρ̃ → 1
the lateral perimeter density should vanish. That is, for increasing branch density the branches
start to make contact with each other, effectively reducing the growth surface for geometrical
reasons. The simplest expression for P⊥(r), fulfilling the above conditions, is

P̃⊥(r) = αbρ̃(r)

(
1 − ρ̃(r)

ρ0

)
. (9)

The proportionality constant αb, which we call the branching factor, is related to the thickness
of the branches. One can derive the following estimate for αb:

αb = C̄b(r)ā⊥
Āb(r)

(10)

where C̄b(r) and Āb(r) are the mean contour and the mean cross section of the branches at
their intersection with the sphere of radius r and ā⊥ is a mean value for the edge lengths in
the lateral directions of an adsorbed growth unit. Since C̄b ∝ d̄b and Āb ∝ d̄2

b , where d̄b is the
mean diameter of the branches, we have that αb ∝ 1/d̄b which means that, at equal ρ̃(r), thin
branches yield a larger lateral perimeter concentration than thick branches. We note that the
estimate (10) for αb does not make sense if the aggregate at position r consists of solid phase
with liquid channels instead of solid branches surrounded by liquid phase. In this case, which
particularly occurs for large solid-phase density, αb is related to the size of the pores.

The averaged parallel perimeter concentration, P̃‖(r), is equal to the decrease of the
averaged solid-phase density over an interval a‖:

P̃‖(r) = −(ρ̃(r + a‖) − ρ̃(r)) � −a‖
∂ρ̃(r)

∂r
(11)

where a‖ represents the edge length in parallel direction of an adsorbed growth unit.
Corresponding to the perimeter sites of two types, we have two different growth constants,

K̃⊥ and K̃‖. Finally we find, by substitution of equations (9) and (11) into equation (7), the
following growth equation:

∂ρ̃

∂t
= K̃‖

ũ

ρ0

(
αρ̃

(
1 − ρ̃

ρ0

)
− a‖

∂ρ̃

∂r

)
(12)

where we call α the lateral growth factor, defined by

α = K̃⊥
K̃‖

αb (13)

where the factor K̃⊥/K̃‖ accounts for the anisotropy in the adsorption at lateral and parallel
perimeter sites. Althoughα may vary as a function of r within the growth front, in particular due
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to the fact that the averaged thickness of the branches may become larger (and correspondingly
αb smaller) in the inner part of the growth front, we assume an effective constant α which yields
the right total lateral growth in the stationary regime.

Furthermore, we also assume that α and K̃‖ are time independent. This assumption
implies a restriction of the types of system to which the model applies. Since the steady-state
aggregation density is a function of K̃‖ and α, as will be shown below, time-independent
parameters yield a constant aggregation density, implying a non-fractal scaling behaviour of
ρ̃(r). In agreement with this, we find a constant width of the growth front.

More generally, we may assume that in the stationary regime, α varies within the growth
front as a linear function of ρ, i.e. α(r, t) = α0 −α1ρ(r, t), where we expect α1 to be positive.
However, we have checked numerically that if the variation of α within the growth front is not
too large, but e.g. of the order of a factor 2, then the resulting solution is close to the solution
for an effective averaged constant α (and equal K̃‖) in the sense that the aggregation density
and the width of the growth front both agree approximately. This shows that the dependence
of P⊥ on ρ is, apart from the fact that P⊥ should vanish for ρ = 0 and ρ = 1, not very critical,
which justifies the use of an effective constant α as an empirical parameter.

The total flux of growth units in the liquid phase through a sphere of radius r , J (r), is
equal to the spherically averaged flux and can be related to the gradient of the spherically
averaged concentration by

J (r) = D�dr
d−1

(
1 − ρ̃

ρ0

)
1

�d

∫
∂u

∂r
d� = D�dr

d−1

(
1 − ρ̃

ρ0

)
∂ũ

∂r
(14)

where in the latter step we have exchanged the integration over the lateral coordinates,
represented by �, and the differentiation with respect to r . The total quantity of growth units
in the liquid phase within a shell with radius r and thickness δr is equal to �dr

d−1 δr (1 −
ρ̃(r)/ρ0)ũ. The rate of change of this quantity is equal to the sum of the fluxes in the liquid
phase in and out the shell minus the quantity of growth units that has been adsorbed within the
shell:

�dr
d−1 δr

∂[(1 − ρ̃(r)/ρ0)ũ(r)]

∂t
= J (r + δr) − J (r) − �dr

d−1 δr
∂ρ̃

∂t
. (15)

If we divide equation (15) by �dr
d−1 δr and take the limit of δr → 0, then, by substitution of

equation (14), we find the following mass conservation equation:

(ρ0 − ρ̃)
∂ũ

∂t
= D

(
(ρ0 − ρ̃)∇2

r ũ − ∂ρ̃

∂r

∂ũ

∂r

)
− (ρ0 − ũ)

∂ρ̃

∂t
(16)

where the operator ∇2
r stands for

∇2
r = ∂2

∂r2
+
d − 1

r

∂

∂r
. (17)

It is important to note that, due to the interchangeability of the integration and differentiation
as used in expression (14), equation (16) correctly describes the diffusion for the averaged
concentration, i.e. it does not contain any further assumptions related to the averaging
procedure.

By the scale transformations ρ̃ ′ = ρ̃/ρ0 and X̃ = ũ/ρ0, equations (12) and (16) trans-
form to

∂ρ̃

∂t
= K̃‖X̃

(
αρ̃(1 − ρ̃) − a‖

∂ρ̃

∂r

)
(18)

and

(1 − ρ̃)
∂X̃

∂t
= D

(
(1 − ρ̃)∇2

r X̃ − ∂ρ̃

∂r

∂X̃

∂r

)
− (1 − X̃)

∂ρ̃

∂t
(19)
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where we have dropped the primes for convenience. Hence, in the remainder of this paper,
ρ̃ is redefined as the fractional averaged solid-phase density with a support between 0 and
1. Note that X̃ is the fractional averaged concentration of growth units in the liquid phase.
In the following, equations (18) and (19) will be referred to as the non-dense growth (NDG)
equations.

To solve the NDG equations we need to specify appropriate boundary conditions.
As the initial function ρ̃0(r) ≡ ρ̃(r, 0), representing a nucleus, for the numerical solutions

presented below, we have taken a Gaussian-like function which is equal to zero at r � R(0)
where R(0) is the radius of the nucleus, i.e. the radius of the aggregate at t = 0. It appears that
the solutions of the NDG equations are soliton-like solutions with a sharp kink at r = R(t),
whereR(t) is the radius of the aggregate at time t (see figure 2) and at the same time the position
of the growth front. Mathematically, we define R(t) such that ρ̃(r, t) � ε for r � R(t) and
ρ̃(r, t) < ε for r > R(t), where ε � 1.

The other initial function, X̃0(r) ≡ X̃(r, 0), has been taken to be the constant function

X̃0(r) = Xb (20)

where Xb is the bulk concentration in the liquid during the growth process.
As regards the concentration of growth units in the liquid phase outside the growth front,

we have investigated two different cases.

• Fixed diffusion layer: X̃(R(t) + 'D, t) = Xb. Here 'D is the width of a fixed (i.e. time-
independent) diffusion layer outside the growth front. This boundary condition typically
applies to a stirred crystal growth process or in systems where free convection plays an
important role.

• Free diffusion layer: X̃(R(t) + 'D(t), t) = Xb. This boundary condition means that a
diffusion layer is built up during the process with a width'D(t)which is purely determined
by the diffusion process, so 'D(t) is time dependent in general. This boundary condition
is realistic for the description of an unstable growth process in a finite system as long as
the diffusion layer does not reach the boundaries of the system.

The velocity v of the growth front, i.e. the increase of the radius of the aggregate, resulting
from the NDG equations can be derived as follows:

v = dR

dt
� ∂ρ̃

∂t

∣∣∣∣
R

δR

δρ̃

∣∣∣∣
R

� −∂ρ̃

∂t

∣∣∣∣
R

(
∂ρ̃

∂r

∣∣∣∣
R

)−1

� K̃‖a‖X̃R (21)

where in last step we have used the growth equation (18) which implies

∂ρ̃

∂t

∣∣∣∣
R

� −K̃‖a‖X̃R

∂ρ̃

∂r

∣∣∣∣
R

(22)

where we have used that ρ̃(R) � ε is very small. In the third step of equation (21), a
minus sign appears, since (δR/δρ̃)|R is positive whereas (∂ρ̃/∂r)|R is negative (see figure 2).
Equation (20) shows that the front velocity is proportional to the averaged concentration of
growth units at the growth front, X̃R , as it should be since we have assumed linear growth
kinetics. The proportionality constant, K̃‖a‖, is just the growth velocity per unit of fractional
averaged concentration, v̂, so

K̃‖ = v̂

a‖
. (23)

Usually, experimental values or estimates of v̂ and a‖ are available as input.
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3. The solutions

To find the solutions of the NDG equations we first apply the following scale transformations
to the dimensionless coordinates:

r ′ =
√

αv̂

Da‖
r (24)

and

t ′ = αv̂

a‖
t. (25)

By this transformation and using equation (23) the NDG equations (18) and (19) transform to

∂ρ̃

∂t
= X̃

(
ρ̃(1 − ρ̃) − λ

∂ρ̃

∂r

)
(26)

and

(1 − ρ̃)
∂X̃

∂t
=

(
(1 − ρ̃)∇2

r X̃ − ∂ρ̃

∂r

∂X̃

∂r

)
− (1 − X̃)

∂ρ̃

∂t
(27)

where we have omitted the primes for convenience and where the only remaining parameter λ
is defined by

λ =
√
v̂a‖
αD

. (28)

We call λ the instability parameter. As we will see below, a large λ yields an open structure
with a low solid-phase density, whereas a small λ gives a dense structure. Note that λ contains
both the surface kinetics, represented by v̂ and α, and the mass diffusion, represented by D.

In the next section we will first consider numerical solutions of equations (26) and (27)
and then, in section 3.2, we present the analytical steady-state solution.

3.1. Numerical solutions

In figure 2 typical solutions for d = 3 (i.e. spherical geometry) and a free diffusion layer with
Xb = 0.1 are shown for λ = 0.5, 1.5 and 2.5. Clearly the instability parameter λ controls the
averaged solid-phase density. For a given t three regions can be distinguished along the space
axis: a starting region OA, a static region AB and a front region BC (see figure 2(b)). In the
regions OA and AB the concentration of growth units in the liquid phase has dropped to zero,
so the growth only takes place in the front region BC, which is called the growth front. By
numerical analysis we found that in the region AB, ρ̃(r) behaves as

ρ̃(r) = ρ̃s +
A

r
(29)

where A is a constant depending on λ and Xb. The second term in equation (29) is a small
correction which vanishes for large r and occurs only for d = 2 and d = 3 and not for d = 1.
Apparently it is due to the (d − 1)/r term in expression (17) for the ∇2

r operator. In fact
the 1/r correction is relatively unimportant. In the static region the solid-phase density is
almost constant and equal to ρ̃s . This corresponds to a structure with a uniform distribution
of the solid phase. For a free diffusion layer, considered here, the value of ρ̃s depends only
on the instability parameter λ and not on Xb as long as ρ̃s is larger than Xb. For increasing λ

and fixed Xb, ρ̃s decreases until, at some critical λ, it becomes equal to Xb and then remains
constant. This agrees with the fact that mass transport is no longer a limiting factor if the
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Figure 2. The evolution of the averaged solid-phase density ρ̃(r) and concentration of growth
units in the liquid phase, X̃(r), as a function of r (in dimensionless units) over equidistant times
t0, . . . , t4 obtained by numerically solving equations (26) and (27) for (a) λ = 0.5, (b) λ = 1.5 and
(c) λ = 2.5 and a free diffusion layer with Xb = 0.1.

solid-phase density does not exceed the liquid bulk concentration of the growing substance.
Thus ρ̃s ∈ [Xb, 1]. An analytical expression for ρ̃s , obtained from the steady-state solution,
will be given below.

Besides this, we also found that ρ̃s was dependent on the choice of the finite-difference
interval of the numerical solution. Normally one should reduce the size of this interval
until convergence is achieved. However, for small λ it was difficult to achieve convergence.
Reducing the size of the finite-difference interval, the solutions did not change qualitatively
but the value of ρ̃s slightly increased. The reason for this is that the width of the growth front
vanishes for small λ, as will be clear from the analytical steady-state solution presented in
section 3.2, and the fact that it is hardly possible to describe a completely sharp interface in
a finite-difference method. Therefore we have made a fixed choice for the finite-difference
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interval δr and taken it equal to λ/2. Qualitatively, this choice does not change the results
shown of figure 2, as is also confirmed by the analytical solution.

The velocity of the front, v(t), divided by the initial velocity v0 = v(0) is shown in figure 3
for Xb = 0.1 and two values of λ. In the dimensionless coordinate system the velocity of the
front is given by applying the scale transformations (24) and (25) to equation (21):

v(t) = X̃R(t)λ (30)

where we have also used equations (23) and (28). Initially, at t = 0, the concentration at the
front, X̃R(0), still equals the bulk concentration,Xb, so the initial velocity is equal to v0 = Xbλ.
Then, after the growth process has started, there is a rapid collapse of the velocity, but soon a
quasi-stationary regime is entered where the velocity decreases only weakly. By plotting ln(v)
versus ln(t) we found a straight line with a slope of −1/2 for large t , which means that v(t)
behaves as t−1/2 for large t , i.e. after the initial collapse. At least this is the case for values of
λ where ρ̃s is larger than Xb. The t−1/2-behaviour is typical for diffusion-limited growth [2].
An empirical expression that gives the correct front velocity at t = 0 and fits quite well with
the numerically obtained front velocity for the case where ρ̃s > Xb is given by

v(t) = Xbλ√
1 + Bvt

(31)

with a suitable constant Bv . The agreement of expression (31) with the numerical solution is
illustrated by the dashed lines in figure 3. For sufficiently long times we have that Bvt is much
larger than one. In this limit the front velocity tends to

vs(t) = Xbλ√
Bvt

. (32)

This is the front velocity in the diffusion-limited regime. In the next section an analytical
expression for Bv will be derived.

0 10000 20000
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t

Figure 3. The front velocity v divided by the initial velocity v0 = Xbλ as a function of time (in
dimensionless units) for λ = 1 and 2 and a free diffusion layer with Xb = 0.1.

For large values of λ, where ρ̃s = Xb, the front velocity decreases at the beginning, but
soon a stationary situation is reached where it remains constant.

For a fixed diffusion layer of width 'D , where X̃(R(t)+'D, t) = Xb, numerical analysis
shows that the behaviour of ρ̃(r) as a function of r is equal to that for a free diffusion layer
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and is described by the expression (29). For large 'D the value of ρ̃s is almost equal to that
for a free diffusion layer, but a higher ρ̃s occurs for small 'D in particular for large Xb (see
the next section). Initially, the front velocity behaves according to equation (31), but after a
short time it remains constant in contrast to the t−1/2-behaviour for a free diffusion layer.

If the system is taken to be finite, this has no effect on ρ̃(r), but the front velocity starts to
decrease rapidly when the diffusion layer reaches the boundary of the system.

3.2. Analytical steady-state solution

The numerical solutions of the NDG equations for a fixed diffusion layer show that there is
a steady-state solution with a constant front velocity in this case. In this section this solution
is derived analytically, leading to expressions for ρ̃s , the front velocity and the width of the
growth front. Then the solutions are adapted for the case of a free diffusion layer, which leads
to an analytical determination of the coefficient Bv defined above.

3.2.1. Fixed diffusion layer. To find the steady-state solution in the case of a fixed diffusion
layer, yielding a constant front velocity v in the stationary regime, we apply the following
coordinate transformation:

z = r − vt (33)

and choose the origin in the moving frame at the growth front, i.e. z = 0 at r = R. This
transformation implies the following replacements in equations (26) and (27):

∂

∂t
→ −v

d

dz
and

∂

∂r
→ d

dz
. (34)

Then, after some algebra and using the fact that the term proportional to 1/r vanishes in the
stationary regime, equations (26) and (27) can be rewritten as

˙̃ρ = X̃ρ̃(1 − ρ̃)

λX̃ − v
(35)

and

˙̃ρ = (1 − ρ̃)
¨̃
X + v(1 − ρ̃)

˙̃
X

vX̃ + ˙̃
X − v

(36)

respectively, where the dots and double dots indicate the first and the second derivatives with
respect to z respectively. For z � 0, where ρ̃ is zero, it follows from equation (36) that X̃(z)

is a solution of
¨̃
X = −v

˙̃
X (z > 0). (37)

The boundary conditions for ρ̃(z) and X̃(z) are: ρ̃(0) = 0, X̃(0) = X̃R = v/λ, X̃(−∞) = 0
and X̃('D) = Xb.

For z < 0, where ρ̃(z) > 0, the right-hand side of equation (35) must be equal to that
of equation (36), which leads to a quadratic equation for ρ̃ with two solutions. One of the
solutions is given by

ρ̃ = (λX̃ − v)(
¨̃
X + v

˙̃
X)

X̃(vX̃ + ˙̃
X − v)

(38)

and the other one is the constant function ρ̃ = 1. Consider the former solution. By substitution
of equation (38) into equation (35) we obtain an uncoupled differential equation for X̃, which
has a simple solution satisfying the above-mentioned boundary conditions, namely

X̃(z) = X̃R exp(z/λ) = v

λ
exp(z/λ) (z < 0). (39)
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Substitution of this X̃(z) into equation (38) leads to

ρ̃(z) = C(1 − exp(z/λ))

C(1 − exp(z/λ)) + 1
(z < 0) (40)

where C is given by

C = 1 + λv

λ2 − 1 − λv
. (41)

The value of ρ̃s as defined above is given by the value of ρ̃(z) for z → −∞:

ρ̃s = 1 + λv

λ2
= 1

λ2
+ X̃R. (42)

Since ρ̃s must be less than or equal to one, the solution (40) is only acceptable if λ2 >

1 + λv. The concentration of growth units at the growth front will be smaller than the bulk
concentration, i.e. X̃R � Xb. Therefore the contribution of the second term on the right-hand
side of equation (42) is maximally equal to Xb. The value of X̃R is, by equation (30), directly
related to the front velocity, which we have still not determined but which will be given below.
A relatively large front velocity, i.e. a large X̃R , occurs for a small diffusion layer, and thus
a significant increase of ρ̃s can occur for large Xb and a small fixed diffusion layer. For the
case of a free diffusion layer, which is treated further on, the term X̃R in equation (42) can
be neglected if ρ̃s > Xb, i.e. if λ <

√
1/Xb. We note that, particularly for small λ, the

result of equation (42) is quantitatively not in agreement with the numerical results shown in
figure 2, which is due to the bad convergence of the numerical solution as a function of the
finite-difference step length as explained above.

For λ2 � 1 + λv, the physically relevant solution is given by the other solution of
equations (35) and (36), i.e. ρ̃ = 1, implying

ρ̃(z) = θ−(z) (43)

where θ−(z) is equal to zero for z � 0 and one for z < 0. The solution (43) represents
a completely dense structure with a sharp interface of zero width. Actually in the limit of
λ2 ↓ 1 + λv the solution (40) converges to the solution (43). In this limit, C tends to infinity
and ρ̃(z) becomes equal to one for all z < 0.

For z � 0, ρ̃(z) = 0 and the solution of equation (37) that satisfies the boundary conditions
is given by

X̃(z) =
(

Xb − X̃R

1 − exp(−v'D)

)
(1 − exp(−vz)) + X̃R (z � 0). (44)

In the case where λ2 > 1 + λv, where ρ̃(z) is given by expression (40) for z < 0, the sol-
ution for X̃(z) is continuous at z = 0, since both expressions (39) and (44) yield X̃(0) = X̃R .
Furthermore, one can show by integration of equation (36) over an infinitesimal interval across

the interface (i.e. around z = 0) that also ˙̃
X(z) must be continuous at z = 0. This flux

continuity constraint, i.e. equating the derivatives of equations (39) and (44) at z = 0, and
using the fact that X̃R = v/λ, leads to the following transcendental equation for the front
velocity:

v = λXb − 1

λ
(1 − exp(−v'D)) (45)

which fixes the value of v for a given diffusion layer width 'D . For 'D = 0 we find that
v = λXb and X̃R = Xb as it should.

If instead the solution for ρ̃ is given by the step function (43) (for λ2 � 1 + λv), then
X̃(z) is not defined for z < 0 (inside a completely dense structure!), but for z � 0 the solution
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(44) for X̃(z) still applies. In this case the value of v follows from the constraint that the total
flux through the interface at z = 0 must be equal to the velocity times the averaged density:

dX̃

dz

∣∣∣∣
0

+ vX̃R = vρ̃s (46)

with ρ̃s equal to one in this case. The first term on the left-hand side represents the current
of growth units passing the interface and the second term represents the extra quantity of
growth units that passes the interface due to the fact that the interface is moving. We note
that equation (46) also applies if λ2 > 1 + λv. However, in that case we have to substitute
equation (42) for ρ̃s and get back to equation (45). Working out equation (46) with ρ̃s = 1
leads to

v = λ − λ(1 − Xb) exp(v'D) (47)

where we have used the fact that X̃R = v/λ. Again, v = λXb for 'D = 0.
In figure 4 the value of v/v0 = v/(Xbλ) is shown as a function of 'D for various values

of λ and Xb. Depending on the value of λ, the value of v has been calculated according to
equation (45) or equation (47).
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Figure 4. The front velocity v divided by the initial velocity v0 = Xbλ as a function of a fixed
diffusion layer width 'D for λ = 0.1, 1, 2 and 10 and Xb = 0.1 (full curves) and 0.01 (broken
curves).

For a given λ > 1, expression (40) is the solution for ρ̃(z) if λ2 > 1 + λv, implying
v < (λ2 − 1)/λ. Due to equation (45), this implies the following condition for 'D:

'D > −
(

λ

λ2 − 1

)
ln[(1 − Xb)λ

2]. (48)

If this condition is not satisfied, then the physically relevant solution for ρ̃(z) is given not by
equation (40) but by the step function (43). For λ2 > 1/(1 − Xb), condition (48) is always
fulfilled and the relevant solution is given by equation (40) for any value of 'D . Vice versa,
equation (48) defines a relation for the critical value of λ, which we denote as λc, where
the growth becomes non-dense as a function of 'D . For λ > λc the growth is non-dense,
i.e. ρ̃s < 1. Figure 5 shows λc as a function of 'D for various values of Xb.
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Figure 5. The critical value of λ, λc , at which the transition from stable growth (λ � λc) to unstable
growth (λ > λc) takes place according to the NDG equations as a function of the fixed layer width
'D (in dimensionless units) and for four values of Xb . In the case of a free diffusion layer, λc = 1
for any Xb < 1.

From equation (45) we can derive the following bounds for the value of v:

λXb − 1

λ
< v < λXb. (49)

For large λ the term exp(−v'D) in equation (45) vanishes rapidly for finite non-zero 'D , and
v tends to

v � λXb − 1

λ
. (50)

By substitution of this v into equation (42) we find that ρ̃s is equal to Xb such values of λ. In
the case where 'D = 0 we have that v = λXb and find that ρ̃s is equal to (1+λ2Xb)/λ

2, which
again converges to Xb for λ → ∞. So we find that Xb is a lower bound for ρ̃s in agreement
with the numerical result.

If we define the penetration depth as the distance where the concentration of growth units
in the liquid phase inside the aggregate has dropped to 1/e times its value at the front, then
according to equation (39) the penetration depth is equal to λ.

We define the front width 'G as the distance between the front and a point inside the
aggregate where the averaged solid-phase fraction is equal to a fraction (1 − exp(−1)) times
the limit value ρ̃s , i.e.

ρ̃(−'G) = (1 − exp(−1))ρ̃s (51)

which can be worked out and leads to

'G = λ[1 + ln(exp(−1)ρ̃s + 1 − ρ̃s)] (52)

where we have used equations (40), (41) and (42). Equation (52) gives a monotonic relation
between the front width and the density ρ̃s . Note that for a given v, λ is also a function of ρ̃s
by equation (42). We find that 'G = 0 for ρ̃s = 1 and 'G = λ for ρ̃s → 0 (only possible
for Xb → 0). More generally, instead of the fraction (1 − exp(−1)) in equation (51), one can
take (1 − exp(−n)) with n a positive integer, yielding 'G = 0 for ρ̃s = 1 and 'G = nλ for
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ρ̃s → 0. If the front width is available from experimental data, then the choice of n has to
be in agreement with the definition and/or the accuracy of the experimental front width. In
figure 6, 'G/λ is shown as a function of ρ̃s , according to equation (52) and for n = 1, 2 and 3.
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Figure 6. The width of the growth front, 'G (in dimensionless units), divided by λ as a function
of the averaged density in the static region, ρ̃s , for n = 1, 2 and 3 (see the text).

3.2.2. Free diffusion layer. If the diffusion layer width 'D is not kept constant by some
external process (e.g. agitation or stirring) and the averaged solid-phase density is larger than
the bulk concentration of growth units in the liquid phase, then 'D will increase in time.
Consequently the concentration of growth units at the front and thus the front velocity will
decrease in time. Therefore, to find the solutions for large t , i.e. in the the quasi-stationary
regime, we apply the more general transformation

z = r − R(t) (53)

so, instead of the replacements (34), we have to make the following replacements in
equations (26) and (27):

∂

∂t
→ ∂

∂t
− v(t)

∂

∂z
and

∂

∂r
→ ∂

∂z
(54)

where v(t) = dR/dt is the time-dependent front velocity. However, in the limit of large t ,
and assuming that the front velocity behaves as v(t) ∝ t (β−1) with 0 < β < 1 for large t , the
solutions (39), (40), (43) and (44) with v replaced by v(t) still apply, because by substitution
of these solutions into the differential equations we find that the extra terms due to the partial
derivative ∂/∂t are at least a factor t−β smaller than the highest-order terms.

From the numerical solution we found that the exponent β is equal to 1/2. Here we will
show analytically that this is indeed the correct exponent. Generally we may assume the
following power-law behaviour for R(t) and 'D(t) in the quasi-stationary regime:

R(t) � BRt
β ⇒ v(t) = βBRt

(β−1) (55)

and

'D(t) � B't
γ (56)

where BR and B' are independent of time.
In the following analysis we consider the case where 1 < λ <

√
1/Xb, i.e. the case

where the growth is non-dense and ρ̃s > Xb, and determine BR and B' for this case after first
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showing that β = γ = 1/2. Since for ρ̃s > Xb the concentration of growth units in the liquid
phase at the growth front vanishes in the quasi-stationary regime, we may neglect the second
term in equation (42), so ρ̃s = 1/λ2 for λ > 1.

As for a fixed diffusion layer, ∂X̃/∂zmust be continuous at z = 0. Therefore equation (45)
remains valid for large t , where it approaches

exp(−v(t)'D(t)) = 1 − λ2Xb (57)

since v(t) is smaller by a factor tβ−1 than the constant terms. This relation can only be satisfied
if the right-hand side is positive, i.e. if λ <

√
1/Xb. In the limit of λ ↑ √

1/Xb, the density
ρ̃s tends to the value Xb. For λ �

√
1/Xb, ρ̃s is equal to Xb, and v(t) does not vanish for

large t but remains constant. In this case, equation (57) does not apply, but v follows from
equation (45) with an appropriate 'D that follows from the total mass conservation (given
by equation (59) below). This result is completely reasonable, because if the density of the
solid phase does not exceed the bulk concentration of growth units in the liquid phase, mass
transport is no longer a limiting factor and the velocity will not decrease over time in the
stationary regime.

For λ <
√

1/Xb, it follows from equation (59) that v(t)'D(t) must be a constant for
t → ∞. Using equations (55) and (56) this implies the following relation for the exponents β
and γ :

β + γ = 1. (58)

A second relation for β and γ is obtained by imposing global conservation of mass
which, assuming an initial situation with only growth units in the liquid phase with a constant
concentration Xb, implies∫ R(t)

0
(ρ̃s − Xb)r

d−1 dr +
∫ R(t)+'D(t)

R(t)

(X̃ − Xb)r
d−1 dr = 0 (59)

where we have assumed that the width of the initial regime and the growth front is much smaller
than R(t), which is always the case for sufficiently large t . To carry out the integrations in
equation (59) we substitute ρ̃s = 1/λ2 and approximate X̃(r, t) for r � R(t) by

X̃(r, t) = Xb

(1 − exp(−v'D))
(1 − exp(−vz)) = 1

λ2
(1 − exp(−v(r − R(t))) (60)

where we have used the fact that X̃R = v/λ becomes negligible with respect to Xb in the
quasi-stationary regime and equation (57). With these substitutions, for the case of planar
geometry (d = 1), equation (59) leads to

(1 − q)(R + 'D) − q

v
= 0 (61)

where q is defined by

q ≡ λ2Xb. (62)

By substitution of equations (55) and (56) into equation (61) we find that equation (61) can
only be satisfied for all t if β is equal to γ , which together with equation (58) leads to

β = γ = 1/2. (63)

We note that equation (63) is also valid for λ � 1, where ρ̃s = 1.
Equation (57) yields the following relation between v and 'D:

'D = −Cq

v
(64)
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where Cq is equal to

Cq = ln(1 − q). (65)

By substitution of equation (64) into equation (61) and using equation (55) we find

B2
R = 2q

1 − q
+ 2Cq. (66)

Combination of equations (55), (56), (63) and (64) gives

B' = −2Cq

BR

. (67)

For circular (d = 2) and spherical (d = 3) geometry the procedure for finding BR and
B' is exactly the same and can also be worked out analytically. Equation (63) applies to all d.
For d = 2 we find that B2

R is the solution of a polynomial of the second degree in B2
R yielding

B2
R = 2

(
q

1 − q
+ Cq

)
+ 2

[(
q

1 − q

)2

+
2(Cq + q)

1 − q

]1/2

. (68)

For d = 3, B2
R is the solution of a polynomial of the third degree in B2

R:

B6
R + a4B

4
R + a2B

2
R + a0 = 0 (69)

where

a4 = −6

(
q

1 − q
+ Cq

)
(70)

a2 = −12

(
2q

1 − q
+ 2Cq − C2

q

)
(71)

a0 = −8

(
6q

1 − q
+ 6Cq − 3C2

q + C3
q

)
. (72)

In figure 7, BR is shown as a function of q for d = 1, 2 and 3. Equation (67) for B' applies
to d = 1, 2 and 3.
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Figure 7. The value of BR as a function of q ≡ λ2Xb for d = 1, 2 and 3.

The above relations show that for any dimension d the coefficient BR is only a function
of q which, according to equation (62) and using that ρ̃s = 1/λ2, is equal to Xb/ρ̃s . The
smaller Xb/ρ̃s , the smaller BR , and the smaller the front velocity (equation (55)). This is a
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natural result since the ratio Xb/ρ̃s is a measure of how much growth substance has to be
supplied by diffusion. The smaller this ratio, the more time it will take to grow an aggregate
of a given radius. It is also an important result because it gives a direct relation between the
front velocity v(t), the bulk concentration Xb and the solid-phase density ρ̃s . This implies that
for a given Xb, one can determine ρ̃s by measuring v(t) or R(t) without knowing v̂ and α.
This result, which is in a sense independent of the approximations involved in the derivation
of equation (18), forms the basis for the diffusion-limited instability test described in the next
section.

Equating the two expressions for the front velocity in the quasi-stationary regime, equ-
ations (32) and (55) with β = 1/2, we find that the coefficient Bv is given by

Bv =
(

2Xbλ

BR

)2

. (73)

For the case where λ � 1, where we have stable growth with ρ̃s = 1, we can determine
BR and B' by applying the same analysis as for λ > 1. If we do so, we find exactly the
same relations for BR and B' but with q replaced by Xb. This means that for λ < 1 the front
velocity in the quasi-stationary regime does not depend on λ, but is completely determined by
diffusion, which is a known result for diffusion-limited stable growth. However, equation (73)
applies for all λ <

√
1/Xb, so Bv depends on λ also for λ � 1. The smaller λ (�1), the

smaller Bv , and the more time it takes to reach the diffusion-limited regime (where Bvt � 1).

4. Implications

Several experimental values for a non-dense growth process can be obtained. In some cases
we only have the position of the growth front as a function of time, R(t). Other possible
data are the averaged solid-phase density ρ̃s , the growth front width 'G and the width of the
diffusion layer'D . For (quasi-) two-dimensional systems, R(t), ρ̃s and'G can be obtained by
optical transmission microscopy. For a three-dimensional system these data may be obtained
by confocal scanning laser microscopy (CSLM). The extent of the diffusion field 'D can be
measured by, for example, optical interferometry [25] or Schlieren microscopy [26].

Sometimes there is uncertainty about whether the observed instability, i.e. the non-dense
character of an aggregate, is due to diffusion limitation or to the surface kinetics. For such
cases, if the growth has taken place under the condition of a free diffusion layer, it is possible
to carry out a simple test, described hereafter as the diffusion-limited instability test, which is
based on the measured R(t) data and a known diffusion constant D. At the same time, this
test gives an estimate of the averaged aggregation density.

4.1. Diffusion-limited instability test

According to our model, the position of the growth front (in real units) for a structure with a
constant (non-fractal) aggregation density should obey the relation

R(t) =
√
DBR(t0 + t)1/2 (74)

where we have chosen the origin of the time axis at a point after the initial collapse of the front
velocity, i.e. in the stationary regime. This means that t0 is an initial time which is at least as
large as the time needed to reach the stationary regime. The difference from expression (55)
with β = 1/2 is the factor

√
D, which appears due to the back-transformation to the real time

and space coordinates. For measured R(t) data, the coefficient BR can be obtained from the
slope s of the best straight-line fit of the data in an R2 versus t plot according to BR = √

s/D.
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Then, if we insert BR into one of the equations (66), (68) or (69), depending on the geometrical
dimension d , we have an equation for q that can be solved for q. Alternatively, one can also
use figure 7. Consequently, for a given Xb the instability parameter λ can be obtained via
equation (62). Then there are two possibilities:

(i) λ � 1. In this case the observed instability is not due to diffusion limitation, but must
be due to the surface kinetics (e.g. polymer spherulites). According to our model, only
the stable steady-state solution (43), yielding ρ̃s = 1, would apply. Apparently the
diffusion-limited regime has not yet been reached, and our model does not give any
further quantitative information. However, in the language of our model one could say
that for these cases both v̂ and α are small. A small v̂ means that the diffusion-limited
regime can only be reached for very long times and large systems. Hence, the observed
instability is caused by a small lateral growth factor α and not by diffusion limitation.

(ii) λ > 1. This means that at the observed front velocity the mass transport is a limiting
factor for the averaged solid-phase density, since according to equation (42) ρ̃s = 1/λ2 is
less than unity in this case. Whether the surface kinetics represents an additional limiting
factor, with the result that the actual averaged density is less than 1/λ2, cannot be decided
on the basis of the R(t) data only. In fact this depends on whether the diffusion-limited
regime has been reached or not. If one is able to determine that the width of the growth
front, 'G, is substantially smaller than R, then one can conclude that the diffusion-limited
regime applies and 1/λ2 is an estimate for the averaged solid-phase density.

In some cases the growth of a non-dense structure may take place in the diffusion-limited
regime, but the front position does not agree with equation (74) in the sense that the exponent
in the time dependence is larger than 1/2. Usually one expects it to be between 1/2 and 1. A
possible explanation for this could be that the actual solid-phase density is not constant but
decreases (weakly) as a function of r , eventually according to some fractal dimensionDH < d.
This yields a less quickly decreasing front velocity since fewer growth units have to be supplied
as compared to the case where the solid-phase density would remain constant. However, if the
exponent is approximately equal to one, i.e. R(t) ∝ t , then it is also possible that the value of
q is close to one, which means that ρ̃s is equal to the bulk concentration Xb. In this case, mass
transport is not a limiting factor and, as a consequence, the front velocity is constant. Note that
also structures with a decreasing aggregation density will reach the limit value ρ̃s = Xb for
sufficiently long growth times. In both cases the above test can still be carried out. For weakly
decreasing ρ̃s , equation (74) still applies but with a weakly time-dependent BR = BR(t0 + t).
The test will lead to a time averaged value for BR , and consequently gives an averaged value
for λ and ρ̃s .

Actually, it is possible to extend the theory to describe also fractal growth, by assuming
a time-dependent parameter α(t) (and/or eventually a time-dependent parameter K̃‖(t)) [24].
Assuming that the solution of the NDG equations for (weakly) time-dependent parameters can
be described as a gradual evolution of the solution for constant parameters, one finds that, for
a given power-law behaviour of

λ(t) ≡
√
v̂(t)a‖
α(t)D

as a function of t , the power behaviour of ρ̃s(r) as a function of r and that of R(t) as a function
of t are fixed. This implies that one can determine the fractal dimension of a structure by the
determination of the exponent β from measured R(t) data.

Nevertheless, the diffusion-limited instability test should not be applied to very open
needle-like structures with a low fractal dimension, since such structures are not described by
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the NDG equations. It should be applied to structures which look like having either a constant
or weakly decreasing aggregation density.

4.2. Solid-phase density and width of the growth front

If the averaged solid-phase density, ρ̃s , is also available experimentally, one can compare this
with the estimate that follows from the diffusion-limited instability test. This gives additional
information on the growth mechanism.

As mentioned above, a strong indication for diffusion limitation is obtained by measuring
the width of the growth front, 'G, which must be smaller than R in the diffusion-limited
regime. Besides, if 'G is constant during the growth, this indicates that also ρ̃s is constant
(equations (42) and (52)). From the measured 'G, the parameters α and v̂ can be determined
as follows.

The growth front in real units is given by

'G =
√
Da‖
αv̂

'′
G (75)

where '′
G is the front width in the dimensionless units given by equation (52). Then by

substitution of equation (52) into (75) and using equation (28), we find that α is given by

α = a‖
'G

[1 + ln(exp(−1)ρ̃s + 1 − ρ̃s)]. (76)

We recall that α is related to the averaged thickness of the branches and the ratio K⊥/K‖ by
equations (10) and (13), so the determination of α by the measurement of the front width may
lead to useful information on K⊥ if an estimate of the averaged thickness of the branches is
available. Note that K⊥ also includes the rate of formation of side branches.

Finally, by combination of equation (28) and equation (76) we find the following
expression for v̂:

v̂ = Dλ2

'G

[1 + ln(exp(−1)ρ̃s + 1 − ρ̃s)] = D

'Gρ̃s
[1 + ln(exp(−1)ρ̃s + 1 − ρ̃s)] (77)

where in the latter step we have used equation (42), neglecting the second term which is
permitted for a free diffusion layer. In particular, equation (77) is a useful relation when good
estimates for v̂ are available, since in that case we have a direct relation between the front
width and the averaged solid-phase density.

For a free diffusion layer, a given solid-phase density ρ̃s and width of the growth front 'G,
the parameters v̂ and α are uniquely fixed by the two equations (42) (with X̃R neglected) and
equation (76), after elimination of λ by using equation (28). The same is also true for a given
fixed diffusion layer where X̃R follows from equation (45). This illustrates the applicability
of our model as a phenomenological description for non-dense growth. It gives a clear and
relatively simple parametrization of such growth and can be used to obtain a qualitative and
quantitative understanding of these complicated processes.

5. Summary and discussion

We have presented a continuum description of diffusion-limited non-dense growth which can
be used for a qualitative and quantitative analysis of an experimentally observed unstable
growth process, in particular for those with a non-fractal scaling behaviour of the aggregation
density. By applying an averaging procedure, the spatial dimension in the model equations is
reduced to one, which makes the problem much easier to solve. The price for this reduction
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is that the equations contain one parameter (α) which is not related to the microscopic kinetic
processes at the surface in a direct manner, so it cannot be determined easily a priori from
known data for a given system. Therefore the model should be used in combination with
experimental data.

The instability is characterized by one parameter, the instability parameter λ, which is
directly related to the aggregation density. A large λ gives an open structure with a small
solid-phase density, whereas a small λ gives a dense structure. The influence of the boundary
conditions in the liquid outside the aggregate on the aggregation density ρ̃s is limited if the
width of the diffusion layer is large, but a significant increase of ρ̃s can occur for a small fixed
diffusion layer and a high concentration of growth units in the bulk liquid. A fixed diffusion
layer yields a constant steady-state front velocity, whereas a free diffusion layer results in a
front velocity which is proportional to

√
D/t in the diffusion-limited regime. In the latter case

we have also determined the proportionality constant (BR/2), which turns out to be a function
of the ratio between the liquid bulk concentration and the averaged solid-phase density. For a
given ρ̃s this result is independent of the details of the surface kinetics taking place within the
growth front and is the basis of a simple test which can be carried out for given front velocity
data and diffusion constant in order to find out whether the non-dense character of the growth
is due to diffusion limitation. In the latter case the test also gives the aggregation density.

In our model the surface kinetics is represented by two parameters, v̂ and α. These two
parameters, together with the diffusion constant and the size of the growth units, have a direct
relationship with the solid-phase density and the width of the growth front. An estimate of v̂
may be available, but most probably α is not known a priori for a given system. It would be a
challenge to try to find a direct theoretical approach for the determination of α. One may think
of minimizing the total free energy, which would lead to an estimate of the averaged thickness
of the branches giving αb by equation (10). In that case, estimates of the bulk and surface free
energies of the solid phase are needed. Another possibility is to extend the model such that
the two forms of lateral growth, namely the thickening of the branches and the formation of
side branches, are taken into account separately. A fast formation of side branches leads to
relatively thin branches, i.e. large α, yielding denser structures. This approach would amount
to including one extra differential equation, describing the evolution in time of α. This may
lead to a non-constant α(t) in the diffusion-limited regime, which would give rise to solutions
with a fractal or non-constant scaling behaviour.
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